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LETTER TO THE EDITOR 
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Abstract The probability density of a non-relativistic particle is written as the sum of two 
non-negative density functions. The Schri3dingex equation is equivalent to continuity equations 
(with source terms) for these functions. The equations are interpreted as describing two modes 
of the pmlicie, which continually transform into each other. 

The standard interpretation of the Schrijdinger wavefunction $, given by Born in 1926, 
is that the function P = v+ is the probability density for the position of the particle 
[I]. , In the same year, Madelung showed that the Schriidinger equation is equivalent to 
the continuity equation for P and another equation, which he identified as the Hamilton- 
Jacobi equation of the particle [2]. Madelung's identification has not been widely accepted, 
although it was the basis of Bohm's interpretation of quantum mechanics [3,4]. 

We are going to show that the Schrodinger equation is equivalent to two continuity 
equations with source .terms. This is simpler than Madelung's decomposition, and has a 
more compelling physical interpretation. 

The Schrbdinger equation for a particle of mass m in a potential y is 

- (ii2/2m)v2@ +mu+ - i@*q = o (1) 

where t is the time coordinate and 8, = a/8t .  We, write @ = *R + $1, where @R and *I 
arereal, and find that ' (fi2/2m)v2*R + mU*R + mc*j = 0 

(2) 
- ( f i ' i z /~m)~~*-,  + mu*{- fia,*R = o .  

Velocities U and v are defined by 

v*R = -mfi-'*+ v*,~= mii-'*Rv. .(3) 

Since $Iv2+R = diV(*[V*R) - v*R. V@I etc, equations (2) imply that 

diV(PRU) + a,PR = & div(PIu) +8,Pj = -U (4) 

where PR = *;, PI = II.? and the source term U is given by 

a = mii-'*R*l(2~ -U.  U). (5) 

We note that U does not involve the derivatives of U or a. 
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The definitions (3) were chosen to give the continuity-type equations (4). Although U 
or v may be sin,& when @ I  or @R vanishes, equations (4) are saved from singularity by 
the multiplying factors $1 and @.+ Equations (4) imply ( I )  at all points where @ I  and @R 
do not vanish. 

If we write P = PR + PI = v@ and define s by PRV + PIU = P s  equations (4) 
imply that 

div(Ps) + alp = 0 

which is the equation of continuity for the probability density P .  (If one writes @ = 
e(T+in/r, where T and S are real, it is easy to show that VS = ms, and that VT = mw, 
where Pur = @R@,(w - U).) 

To understand the significance of (4), we integrate over a volume V of 3 space and use 
the divergence theorem: 

(d/dt) 1 PR d3x = - 1" P R V .  ndA + U d3x (7) 

(8) 

where aV is the surface of V and n is the unit outward normal. To interpret this, we regard 
the particle as having two modes, R and I. The left-hand side of (7) is the rate of change 
of the probability that the particle in V is in mode R. The first term on the right-hand 
side is the rate of change of that probability due to the flux of particles in mode R across 
the surface of V, the second term represents the creation of particles in mode R inside V. 
Equation (8) has an exactly similar interpretation for particles in mode I. Because the last 
term in (8) is the negative of that in (7), the rate at which particles in mode I are desfroyed 
is the same as the rate at which particles in mode R are created. In other words, U is the 
rate of transformation [per unit time and per unit volume) from the I mode to the R mode. 

It is now easy to visualize the meaning of equations (4). One can picture the two 
modes as corresponding to fluids, with densities PR and PI and velocity fields v and 
U, that transform into each other while conserving their total density. We must not, of 
course, take thii classical picture too seriously: one cannot eliminate typically quantum 
effects, such as interference, by a mere change of formalism. If, for example, @' and 

are solutions of (I), then so is @ = @' + @". The corresponding density functions 
are (Pk,  P;), ( P i ,  P;), and (PR,  Pr), where PR = (@k + @{)' = P;( + Pi + 2@k@i 
and PI = (@; + e;)' = P; + P; + 2@3@;, and the last term represent the interference 
effects. It follows from (3) that @IU = @;U' + @;U", @RW = @kv' + @iv", and hence 
that PIU' = Piu" + P;u" + 2@;@:u' . U" and PRU' = Pku" + Piu'" + 2 f R f i v ' .  v". 
Again the interference effects vanish if e;@{ = 0 and @;@; = 0. 

The R and I modes are separately invariant under time reversal (they do not transform 
into each other like particles and antiparticles in quantum field theory). Time reversal is 
the transformation t H t' = -t, @(I, t) H @'(I, t') = @*(I, -I), U(%, t )  n U'(=, t') = 
U(%, -I); it leaves the Schrodinger equation invariant. We define @;, @;, U', w', etc. in 
an exactly similar way to @ I ,  @ R ,  U, and v, etc. Dropping the arguments I, t, and t', we 
get @; = - @ I ,  @k = @ R ,  P; = PI ,  PA = PR, U' = -U, w' = -w, U' = -U. Each of 
equations (4) is therefore invariant, and the R and I modes are unchanged by time reversal. 

It may be accidental, a mere mathematical curiosity, that the Schrodinger equation can 
be written in the form (4). On the other hand, if (4) do describe two modes of a particle, 
we have gained a new insight into quantum mechanics. This new idea could be useful in 
the interpretation of quantum theory and the theory of measurement. 

V 

(d/dt) PI d3x = - 1, P I U .  n d A  - U d3x 
V 
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